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Abstract— Entanglements like vines and branches in natural
settings or cords and pipes in human spaces prevent mobile
robots from accessing many environments. Legged robots
should be effective in these settings, and more so than wheeled
or tracked platforms, but naive controllers quickly become
entangled and stuck. In this paper we present a method
for proprioception aimed specifically at the task of sensing
entanglements of a robot’s legs as well as a reaction strategy
to disentangle legs during their swing phase as they advance
to their next foothold. We demonstrate our proprioception and
reaction strategy enables traversal of entanglements of many
stiffnesses and geometries succeeding in 14 out of 16 trials in
laboratory tests, as well as a natural outdoor environment.

I. INTRODUCTION

Tripping hazards like vines, branches, and outcroppings
fill many natural environments from forest floors to reed
beds. Without a way to navigate these entanglement-filled
environments, mobile robots cannot perform important tasks
like environmental monitoring, scientific sampling, or fire-
fighting. In human environments, robots may need to navi-
gate around cords, hoses, and protrusions to perform tasks
like inspection, delivery, or in-home assistance. In this work,
we develop proprioceptive detection of entanglements on a
quadruped robot’s swing legs and simple control strategies
to disentangle from them, enabling the robot to walk through
numerous, distributed contacts of any stiffness.

In highly vegetated settings, legged robots show unique
promise compared to alternative robotic platforms. Small
wheels become stuck in vines and branches. Large wheels
and tracks roll over obstacles, but may crush or damage them
in the process. Flying robots’ large wings, bodies, and rotors
do not fit between dense woody plants. Legged robots have
the flexibility to both choose footholds and adjust posture to
disentangle from and move around obstructions. However, as
we show in the experimental section, standard controllers that
do not reason about motion through entanglements rapidly
become stuck on vine-like obstacles.

Moving through obstacles like thickets or reeds, contact
is unavoidable. A locomotor must press through them to
progress and cannot simply avoid contact with anything a
visual sensor detects is solid. A locomotor should be able to
push through flexible obstructions, but detect when it is stuck
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Fig. 1. This paper presents an approach to enable a quadruped robot to
walk through entanglements like the bar, bungee cord, and rope shown here.

so that it can disentangle itself. However, the stiffness of
obstacles is difficult to gauge prior to contact. Foliage blocks
most visual sensors and the obstructed materials behind can
vary in stiffness from flexible twigs to rigid rocks.

Detection is also complicated by the dynamics of legged
locomotion. Feet make and break contact with every stride.
During stance phases, forces on the feet are a large fraction
of bodyweight. However, during swing phases, forces much
smaller than bodyweight can be disruptive if they are applied
at unexpected contacts on the body, like tripping over a foot
caught on a ledge or knocking over a chair bumped by a
knee. Rapidly detecting these unexpected forces on the legs is
particularly challenging since they are interspersed between
the stance phase forces and smaller in magnitude than them.

Prior work has demonstrated many approaches to esti-
mating contact. An excellent overview can be found in [1].
Often, proprioception enables robot arms to detect collisions
with objects and people (as discussed in [1]) including when
mounted on a legged robot [2]. [3] analyzes the timing and
impulse associated with contact detection with rigid objects.
However, robot arms are not usually subjected to the large
recurring forces experienced by legs.

On legs, proprioception often provides foot contact de-
tection [4] but reasoning about contacts at other locations
on legs is not as common. [5] localizes where contacts
are on legs or fingers but assumes rigid objects. Measuring
non-stance forces on the legs enables adaptation to these
disturbances [6] and obstacle avoidance [7].

Other work adds additional sensors for detecting contact.
Some use vision to address obstacles or combine vision with
proprioception. Lidar and radar can detect obstacles even
behind foliage, but processing is significant and obstacle



Fig. 2. High-level block diagram of the proposed approach integrated into
a planning and controls stack with new contributed modules highlighted in
blue.

stiffness is still unknown [8]. Proprioception can augment
vision to detect obstacles or terrain parameters like friction
not observed by visual sensors [9] or estimate ground surface
height when it is occluded by foliage [10]. Alternatively,
adding sensing skins allows a robot to measure contact
with great granularity. However, skins involve significant
additional hardware, complexity, and potential for damage
[11], [12], [13], or may not be able to measure many
simultaneous contacts from plants or other objects [14].

Sensing disturbances like unexpected contact by any of
the discussed methods is very useful since it enables a robot
to trigger reactions to them. Stepping over rigid obstacles
like curbs can avert tripping, shown in simulation by [15]
and hardware by [16]. We aim to extend simple reactions
to address obstacles of variable geometry and compliance
including thin entangling objects like vines and cords.

We present a proprioceptive reactive approach that en-
ables a quadruped robot to walk through entanglements dis-
tributed over its limbs. This contribution consists of two key
components. First, we modify momentum-based observation
informed by the hybrid forces of walking to better detect
lower-magnitude forces on a leg in swing phase between its
stance phases, described in Section II-A and hardware tested
in Section III-A. Second, we develop a reactive swing-leg
disentanglement controller that enables a robot to slide out of
and step over simple entanglements described in Section II-B
and hardware tested in Sections III-B through III-E.

II. METHODS

Our methods consists of two control modules: a
momentum-based observer suited for detecting swing-leg
entanglements, and a swing-leg controller (Fig. 2). It is
implemented as an extension to the Quad-SDK open-source
software [17] for legged robot control.

A. Momentum-based Observer

In this section, we develop proprioceptive estimation that
uses only existing sensors on a commercial quadruped robot
(motor encoders and current monitoring) to provide feedback
about contacts across the limbs that may impede progress.
We adapt the Momentum-Based Observer (MBO) of [1]
to monitor externally-induced joint torques on a quadruped
robot’s legs. A new innovation is the re-initialization of the

Fig. 3. General leg geometry for obstacle-induced torque estimation

MBO to improve detection of small forces between stance
phases as described in section II-A.2.

We assume that the robot attempts to walk forwards
through entanglements at a steady speed with level torso
orientation and height and that the torso has significantly
more inertia than the limbs. Following these assumptions,
we use the robot’s torso frame as the base inertial reference
frame, ignoring its acceleration and rotation. Experiments in
Section III show that these assumptions hold.

We model the robot’s limbs as four independent serial
chains with equations of motion governed by

M(q)q̈ + C(q, q̇)q̇ +G(q)− τm − τf = τext (1)

where q are the joint angles, M(q) is the inertia matrix,
C(q, q̇) contains the Christoffel symbols, G(q) are the grav-
itational terms, τm are the joint torques applied by the
motors, τf are estimated joint friction torques, and τext are the
externally-induced joint torques. For the Spirit-40 quadruped
robot, each leg has three joints (named ab/ad, hip, and knee
from proximal to distal and rotating about the body x, y,
and y axes in the zero configuration), such that q, τm, and
τext are vectors of length three. τext arises from the sum of
all external wrenches applied to the limb

τext =

n∑
i=0

JT
ci(q)Fext,i (2)

where Fext,i is one of the n wrenches applied at point ci on
the limb and Jci(q) is the geometric contact Jacobian.

Taking the time derivative of the generalized momentum
p = M(q)q̇ and solving for τext produces the momentum-
based observer described in [1] section III-E, specifically
equations (42–44). The resulting observer maintains a linear
first-order estimate r that approximates τext and does not
require noisy double differentiation of joint angles q

β̂(q, q̇) = G(q)− CT (q, q̇)q̇ (3)
˙̂p = τm − β̂(q, q̇) + r (4)
r = KO(p− p̂) (5)

where p̂ is the estimated generalized momentum of the limb
and p is the generalized momentum of the limb computed
from sensor measurements. Note that we have simplified the
dynamics of r compared to [1]. KO is the diagonal observer
gain matrix that can be selected to tune the time constant



of the observer trading off response time and smoothing
of noise. We chose all diagonal elements of KO to be 25
Hz tuned empirically for a balance between fast response
and rejection of high-frequency noise. We identified inertial
parameters for computing M , C, and G using the method
of [18] with a slight modification to also estimate friction
parameters c and d which we used for friction compensation:

τf,i = −c sign(q̇i)− dq̇i

We found that joints of the same type exhibited similar
friction parameters with the highest dry friction of c = 0.44
N m in the knees and that viscous damping was small for
all joints.

1) Torque estimates for reaction: The MBO torque es-
timates do not distinguish the various forces or points of
application on the robot’s limb, but provide an estimate of
the total resistance the robot feels and its direction. Solving
the full location and magnitude of every contact distributed
across the limb is an under-specified problem [5] but the full
solution is not required to react to obstacles that impede the
robot’s motion; the MBO’s joint torque estimates suffice.

Additional simplification arises from the task of moving
forwards in one direction and a few realistic assumptions
about limb morphology and contact forces. First, we assume
that each of the robot’s legs is an unbranching serial chain
of broadly straight and smooth links in which each link
extends only below and not above the preceding joint as
is usual for legs. Second, we assume that obstacles cannot
exert pulling forces on the surface of the robot limb –
that is, there are negligible adhesive forces. Given these
assumptions, only obstacles ahead of the robot limb can
exert backwards-directed forces impeding forwards progress.
Furthermore, backwards-directed forces always exert torques
in only one direction on joints with axes that are horizontal
and perpendicular to the direction of forwards motion (as
in humans’ knees and in Spirit 40’s hip and knee joints).
This allows us to ignore torques in the opposite direction,
since they can arise only from obstacles pressing on the rear
surface of the limb where they will not impede progress.

2) Initialization: An interesting challenge for external
contact force estimation arises from the action of walking
in which intentional forces with the world alternate between
large (in stance) and small (in swing) magnitudes. Thus,
in this paper we extend the momentum-based observer
approach to separate the estimation of smaller forces from
the planned large external forces.

During stance, external force is usually on the order of 1/2
of the bodyweight for a walking trot gait at 50% duty factor,
resulting in two legs supporting the body at any moment.
However, even forces that induce smaller torques at the joints
can cause an impediment to swing-leg motion.

The robot’s maximum pushing force is limited, requiring
the MBO to detect forces smaller than those at which
the robot becomes stuck. Forces applied to the swing legs
totalling more than some force Fmax are too large for the legs
to push through during swing. At the upper bound, Fmax can
be no larger than µmg where µ is the coefficient of friction

and mg is the bodyweight of the robot. However, in reality
this limit is lower due to controller performance and avoiding
toppling the robot. The achieved Fmax depends on the robot’s
forward velocity control gain tuning, commanded velocity,
and terrain slope and friction.

Fmax sets an upper limit on swing forces, while the MBO’s
noise floor provides a minimum force threshold for detection.
Its accuracy depends on inertial parameter identification
errors whose effect grows as joint velocity and acceleration
increase and on joint dry friction that makes it difficult to
measure torques lower in magnitude than the friction force.

Detecting swing-phase contacts early is important for there
to be sufficient time for any reaction to clear the obstacle.
However, soft contacts from vines or brush in swing phase
can be more difficult than traditional hard impacts since no
impulsive rapid change in momentum results. Furthermore,
these smaller forces are easily overshadowed by the large
stance phase forces early in swing as the momentum observer
estimates converge from their initial large stance values.

To rapidly detect forces on the legs, we re-zero the
momentum-based observer’s momentum estimate p̂ as the leg
leaves stance phase and begins its swing motion. In physical
implementation, the re-zeroing period lasts 30 ms at the start
of swing in case stance ends late due to state uncertainty or
communication latency. This reinitialization takes advantage
of knowledge about stance and swing behavior to improve
accuracy at the start of swing since the limb begins close to
rest and nominally under little load as it ends stance phase
and begins swing phase. We show the benefit of the proposed
MBO reinitialization in Section III-A.

B. Entanglement reaction

1) Formulation and gait constraints: Conventional con-
trollers walk well in the absence of obstacles, but a change
in gait or “reaction” may be required if a limb makes contact
with an obstacle. Two important obstacle properties are: the
peak horizontal force Fo with which it can oppose forward
motion of a limb; and the notion of its geometric “com-
plexity” or how difficult it would be for a path planner to
find a feasible trajectory to overcome the obstacle. Reactions
can occur at different levels of the controller with phase
transitions occuring based on these parameters:

1) If Fo is below Fmax, gait kinematics may remain
largely unchanged and the swing leg can push through
the obstacle by using higher swing leg force.

2) If Fo is greater than Fmax but the entanglement geom-
etry is not complex, the swing leg can be retracted to
step over the obstacle.

3) If the entanglement geometry is moderately complex,
the robot can adjust its gait to solve the entanglement.

4) If the entanglement geometry is exceedingly complex,
the robot can give up on its current planned path and
replan a path that goes elsewhere.

Each method corresponds to reaction at a different level in
a conventional hierarchical planning and control framework
escalating up from joint control to path planning. Generally,
higher-level reactions involve more aggressive deviation from



Fig. 4. Spirit 40 detects and disentangles from a bungee cord. The back right leg detects entanglement when the hip torque exceeds the threshold near
the end of a swing phase (t0 = 0s). During the next swing phase it disentangles via three motions: retract (t1–t2), extend advance (t2–t3), and extend
descend (t3–t4). Following disentanglement, the leg reverts to default behavior on the following step. Pink trace indicates the motion of the foot since the
previous frame, while blue shows all previous motion of the foot.

nominal behavior with corresponding slower progress and
greater energetic cost.

In this work we focus on level 2) where the robot can
retain a high speed and address moderately complex terrain
that may be encountered frequently in realistic environments.
Adaptation of the swing leg motion involves two steps:
“retraction” and “extension” outlined below.

2) Leg retraction: Leg retraction during swing phase aims
to slide out of contact with any obstacles in front of the
leg without precise knowledge of the object’s geometry or
material properties like stiffness. Once τext at the hip or
knee exceeds an experimentally chosen threshold (2 Nm
for Spirit 40 in only the positive direction, as described in
Section II-A) during swing, the leg is considered “stuck” and
begins retraction. Ideally, leg retraction should circumvent
any number of obstacles of any stiffness contacting the leg at
any point on its front surface. Retraction has three objectives:

1) Raise the bottom point of the leg over obstacles
2) Slide obstacles off the bottom of the leg
3) Retain contact until obstacles slide off the bottom of

the leg to avoid retreating from and advancing into the
same obstacle in the absence of visual feedback.

Essentially, while torque estimates indicate the leg is still
behind an obstacle, the leg should apply an upward velocity
at the foot and a light forwards pressure with its distal links.
This is akin to hybrid force-velocity control in which the
foot of the robot applies a forwards force to retain contact
but achieves a positive vertical velocity to slide above them.
In order to slide contacts off of the bottom of the leg, front
surfaces of the limb should retain a downward slope.

For the simple 2-link leg of a commercial quadruped robot,
an experimentally tuned strategy can be applied using a
retraction velocity command at the hip joint (15 rad/s) and
a forwards torque command (2 Nm) at the knee joint. In
physical implementation, retraction lasts a minimum of 0.1
seconds to ensure obstacles close to the knee are cleared.

a) Extension: Once no more contacts are detected on
the limb (τext drops below 2 Nm for Spirit 40) the limb is

considered “free” again and can extend towards the desired
foothold. Extension also begins if the end of the allotted
swing phase time is soon, less than parameter tdown s away,
to ensure it is on the ground in time for the next stance. In
order to avoid re-entangling on obstacles, the lowest point
on the leg (the foot) remains high subject to kinematic
constraints and “advances” horizontally until the foot is
above the desired foothold. At this point, the foot “descends”
until it contacts the ground. By first advancing and then
descending, any obstacle between the previous foothold and
the next foothold (below the height at which obstructions slid
off) will either not contact the leg or will contact only rear
surfaces of the leg. One full reaction motion to disentangle
from a bungee cord is illustrated in Fig. 4.

C. Gait

Gait period T is a particularly important parameter since it
impacts walking control stability, MBO accuracy, and reac-
tion motion success. Low step frequency reduces stability. In
experiments walking at a commanded 0.5 m/s, the regularity
of the gait and error from the commanded posture, height,
and speed deviated further as the gait period increased. Spirit
40 regulated its forward velocity with a 0.037 m/s standard
deviation with T = 0.36 s, rising to 0.084 m/s at T = 0.54
s and to 0.198 m/s at T = 0.75 s.

However, shorter values of T necessitate faster reaction
motion to clear high obstacles. Swinging leg joints through
π/2 rad and back during one step in a 50% duty factor trot
requires an average joint speed of 2π/T . With Spirit 40’s
knee joint free running speed of approximately 20 rad/s,
T can be no shorter than 0.31 s and in practice should be
somewhat slower to leave sufficient control bandwidth. As
a consequence, we standardized on a gait period of 0.54 s,
50% slower than the Quad-SDK default of 0.36 s.

The robot often detects entanglement too late to complete
a successful retraction; e.g. if the leg hits the obstacle late
in its swing. In these cases, the leg can begin its next swing
already retracting to provide ample time to clear the obstacle.



Fig. 5. (Left) Indoor MOCAP testing setup with four anchor points for
obstacles. The image shows the mixed stiffness configuration: a rigid plate
at anchor A, two bungee cords at anchors B and C, and a rope at anchor
D. (Right) Outdoor testing setup in natural entanglement.

To achieve this, the stuck/free state at the beginning of the
next swing is retained from the stuck/free state at time tdown.
If a component of τext remains high at time tdown, the next
swing begins retracting while if the leg is free at tdown the
next swing begins by advancing towards the foothold.

D. Experimental Setup

1) Indoor Experiments: We test the baseline and swing
retraction walking strategies on hardware using Ghost
Robotics’ Spirit-40 to step over obstacles with various stiff-
nesses and altitudes. Our indoor testing uses motion capture
(MOCAP) to provide an estimate of body position and
orientation for the robot. We present the result of using
different walking strategies when facing baseline soft bungee
cords in Table I, and the result of applying our method to
go over five different arrangements of obstacles in Table II.
Our obstacle setup considers Spirit-40’s nominal stance CoM
height of 27 cm and is shown in Fig. 5 (Left). We tie four
light-duty bungee cords (rest-length 1.2 m and a stiffness
of about 250 N/m for deflections under 8 cm, softening to
about 70 N/m for larger deflections) on all anchors A to D.
The rope and rigid plate are placed at anchor A when tested
in isolation. In the mixed setting, we put one rigid plate on
anchor A, two bungee cords on anchors B and C and one
rope on anchor D. In the net experiments, a soccer net with
14 cm square openings covers the entire aisle at an average
height of 7.6 cm. In all settings, the robot is programmed to
go straight at a constant speed of 0.5 m/s with a gait period
of 0.54 s unless otherwise noted.

2) Outdoor Setup: In the outdoor setting, we deploy
Spirit-40 in interwoven natural vines shown in Fig. 5 (Right).
The vines pile up approximately 8 cm above the ground. An
onboard Intel Realsense T265 camera provides rough body
pose estimates to replace indoor tests’ MOCAP estimation.
The robot walking speed is decreased to 0.4 m/s for more
stable estimation.

III. RESULTS

We tested our momentum-based observer and disentan-
glement reaction in a series of hardware experiments. First,
we tested that the MBO sensitivity enables distinguishing
between obstacles that can be pushed past and those that

Fig. 6. (Top) Without resetting, the Momentum-Based Observer (MBO)
retains high torque estimates from stance at the beginning of swing even
when no contacts are present (early), potentially masking actual contacts on
the swing leg (later). (Middle) Resetting the MBO estimates to zero at the
start of stance is a more accurate initialization, allowing easy thresholding to
distinguish free (early) and obstructed (later) swing motion. (Bottom) Weak
obstacles like a thin wire that is easily broken register as small forces.

must be avoided. Second, we compared our strategy to sim-
ple baseline controllers and demonstrated that our strategy
succeeds where others fail while using less power than
aggressive motion. Third, we tested our strategy across a
variety of different obstacle parameters including not just
height but also stiffness. Finally, we tested our strategy
against many complicated contacts in and out of the lab.

A. Momentum-based Observer

We tested the momentum-based observer walking with and
without resetting (Fig. 6 top and middle) and into obstacles
of different strengths – a bungee cord and an easily broken
wire (Fig. 6 middle and bottom).

By resetting the MBO at the beginning of swing, large
torques from stance phase do not corrupt the initial swing
phase torque estimate, allowing it to easily distinguish be-
tween negligible and significant forces by a simple threshold
on the torque magnitude. As stated earlier, forces pushing on
the front surfaces of the limbs can exert only positive torques
about the joints so the threshold needs to only be applied in
the positive direction for all joints in the leg.

B. Reactionless strategy baselines

To test walking with and without our proposed method
under the same conditions, We arranged four bungee cords
on the anchor points of the obstacle rack shown in Fig. 5
with heights from 12.7 cm to 22.9 cm high. We compared



Fig. 7. Our strategy and non-reactive baseline strategies walk into four
elastic obstacles: our strategy overcomes obstacles that stymied baselines
1–3 while using less energy than baseline 4.

Strat.
Metric Success

trials
Obstacles

cleared
Pf

W
Po

W
vf
m/s

vo
m/s

Default [17] 0/3 0/12 87 133 0.49 0
High step 0/3 2/12 126 191 0.46 0
Knee forward 0/3 6/12 94 106 0.43 0
Always retract 3/3 12/12 170 173 0.41 0.42
Our method 3/3 12/12 87 157 0.35 0.17

TABLE I
COMPARISON TO BASELINE STRATEGIES FOR TRIALS IN AN

ENVIRONMENT WITH FOUR ELASTIC OBSTACLES.

the performance of our strategy to the unmodified gait as
well as several modified open-loop baseline walking gaits,
shown in Fig. 7. Table I summarizes the results comparing
measurements of power and speed while walking freely (Pf

and vf ) and while in contact with obstacles (Po and vo).
1) Default baseline: First we tested the default gait of

Quad-SDK [17]. All parameters were left default (step height
0.07 m) except for the gait period which was matched to the
other tests at 0.54s. With default walking behavior, the first
obstacle immediately halted the robot when it became stuck
in the robot’s front knees in all three trials.

2) High stepping: Tripling the swing-leg ground clear-
ance from the default 0.07 m to 0.2 m entirely steps over
some entanglements. However, the outcome depends on the
phase at which the leg strikes an obstacle; if the obstacles
makes contact while the foot is rising, it can become jammed
in the knee as in the default condition. This strategy entan-
gled a front leg on the first obstacle in the first trial and a back
leg in the third, but successfully cleared the first obstacle only
to get stuck on the third one in trial two. Furthermore, high
stepping incurs an energetic cost 50% higher than the default
even in the absence of obstacles.

3) Knees forwards: Modifying leg posture and hence the
shape of the front surface of the leg appears a promising
way to reduce entanglement. Pointing the knees forwards
(equivalent to walking backwards for Spirit 40 with its
four symmetric legs) angles the lower shank down and

Fig. 8. Momentum-based Observer (MBO) estimates for the front two
legs as the robot walks into obstacles with various stiffnesses. Initial contact
occurs at 0s, but the force is not significant enough to warrant reaction until
slightly later for the soft bungee cord and stiff rope.

Obstacle Soft Rope Rigid Mixed Net Total
Our method 3/3 3/3 3/3 3/3 2/4 14/16

TABLE II
OVERCOMING OBSTACLES OF VARIOUS STIFFNESS

back, allowing compliant obstacles beneath the knees to
be naturally deflected down. However, compliant obstacles
above the knees of the leading legs become stuck on the
robot’s torso and those above the knees of the trailing legs
become stuck at the hip joint. This baseline crossed the first
obstacle but became entangled in the third obstacle in all
three trials. Note that it is possible to angle the upper and
lower shanks backwards by placing the feet far aft of the
hips; however, this causes usual quadruped robots to tip over.

4) Retraction on every step: Retracting the leg according
to the reaction motion on every step is capable of avoiding
any entanglement that our proprioceptively-triggered reaction
can avoid. However, like the high stepping strategy, this
behavior is energetically costly. It crossed the obstacles in
three out of three trials, but averaged about 170 W, double
the usual power in the absence of obstacles.

5) Our method: Our proprioceptive detection and reaction
strategy succeeded in all three out of three trials, overcoming
obstacles that baselines 1–3 could not while using less power
than aggressive baseline 4. While our method was slower
than baseline 4, it used as much power as the default in the
absence of obstacles, half as much as baseline 4.

C. Varying stiffness

Our proprioceptive entanglement reaction overcomes ob-
stacles of various stiffnesses using identical control and



Fig. 9. Quadruped robot walks through 8 cm of thick underbrush (Top)
and a soccer net suspended 7.6 cm above the ground (Bottom)

estimation with no retuning for all experiments. In addition
to the arrangement of bungee cords, we tested our strategy
against a softer bungee cord created by connecting three
bungees in series, a stiff rope, and a short rigid aluminum
beam. The proprioceptive reaction strategy successfully de-
tected and stepped over all four stiffnesses in all three out
of three trials, summarized in Table II.

Since the detection and reaction strategy ignores small
forces that can be pushed through, the reaction motion
did not trigger until significantly later when contacting the
soft bungee cord (see Fig. 8). By contrast, the reaction
immediately triggered upon impact with the rigid beam. For
the stiff rope, the force remains negligible while the rope
is slack but rapidly rises to be significant once the rope
becomes taught. This distinguishing between contact loads
avoids overreacting to light contacts that are easily brushed
aside while executing disentanglement motions once forces
become large enough to impede forward progress.

D. Many entanglements

Subsequently, we tested our strategy in two challenging
conditions. Fig. 1 shows the robot walking through obstacles
of several stiffnesses: rigid, bungees, and ropes shown in
Fig. 5. Our strategy again succeeded in all three out of three
trials while interacting with obstacles of different stiffnesses
simultaneously contacting different legs, demonstrating the
proprioceptive reaction strategy’s generality.

For an additional challenge, we walked the robot through
a soccer net, presenting a great many small obstacles to the
robot (Fig. 9). For this extreme challenge, we increased the
body height to 35 cm and decreased the commanded forward
speed to 0.4 m/s. The robot became entangled in the soccer
net in two out of four trials, but succeeded in two.

E. Outdoors

Finally, to validate the viability of our momentum-based
observer and underbrush controller, we ran a preliminary test
of our system outside in a field of dense vines approximately
8 cm deep shown in Fig. 9. We commanded Spirit 40 to
walk forward at 0.4 m/s. Our strategy advanced 1.65 m in
6.5 s while the standard controller’s legs became immedi-
ately entangled and the robot advanced only 0.33 m before
falling down. Our strategy was significantly more robust and

walked multiple gait cycles through thick underbrush before
ultimately falling due to limitations in the camera-based body
state estimation. Further outdoor experiments will require
improved onboard body state estimation, and will be the
subject of future work.

IV. CONCLUSIONS

In this paper, we demonstrate a momentum-based observer
for propriceptive joint torque estimation suited to classify
contacts on a robot’s limb as entanglements. In addition,
we preset a simple leg reaction motion to disentangle from
any detected entanglements. These estimation and leg control
modules can be easily integrated into an existing hierarchical
planning and control framework to enable a commercial off-
the-shelf quadruped robot to sense and disentangle from
obstacles without hardware modification. Hardware exper-
iments demonstrate the efficacy of the proposed strategies
and validate that the simplifying assumptions that enable
decoupling are valid in physical realization.

Assumptions simplify our approach but limit the scope
of our observer and reaction strategy. The current imple-
mentation considers only forwards motion and while the
extension strategy is spatial, the retraction strategy is not.
In particular, the retraction strategy will fail if it becomes
stuck on something. For cases such as this and for higher
obstacles over which the robot would be forced to climb or
leap, integration with higher-level planning will be required.

Future work can evaluate the performance of different
walking, sensing, and reaction strategies in real environments
from underbrush to thickets including performance metrics
like the maximum speed that can be achieved among differ-
ent numbers and types of obstacles. Extraction of additional
contact location and force magnitude estimates or data-driven
estimation could provide refined obstacle information for
disentanglement. While the overall approach presented in
this work should apply generally to platforms of other mor-
phologies, extension to biped robots requires considerations
of balance, foot shape, and other features. This includes
generalizing retraction to spatial motion including sideways
walking in which the robot’s hip and knee joint axes are
parallel to the direction of travel.

Extensions could also address appropriate escalation of
disentanglement maneuvers from simple behaviors that work
for most situations to complex replanning to handle more
circuitous extrication from particularly severe entrapment, as
discussed in Section II-B.1.
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