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Abstract

In recent years, there has been a large research focus on dense video captioning.
Video captioning has applications in many fields such as autonomous driving,
video surveillance and creating captions for those with visual impairments. As
such, a novel approach is proposed by employing language models (LM) to help to
semantically align video features in an attempt to improve the overall performance
of dense video captioning. The baseline model for comparison, End-to-end dense
video captioning with parallel decoding (PDVC) [1], produced strong results
compared to many state of the art video captioning frameworks. PDVC is trained
on the ActivityNet and YouCook2 datasets but for this study only YouCook2
was used due to computational capacity limits. We propose the incorporation
of semantic alignment through the addition of a tuner network before the video
features are passed through the PDVC framework. Ablations were ran for different
tuner architectures and overall, the modified PDVC framework outperformed the
baseline PDVC in many evaluation metrics. Promising future extensions with
Semantic alignment and Dense Video Captioning remain with its application to
larger and more comprehensive data sets. The code base for this project can be
found at: DenseVideoCaptioning

1 Introduction

Video captioning has been a large focus of research in recent years. An accurate video captioning
model has wide-reaching implications in a variety of fields. It can aid those with visual impairments,
improve self-driving cars, refine video surveillance [2] and even automatically label data. In order to
improve the current state of the art (SOTA) dense video captioning models, the addition of semantic
alignment holds much promise. Semantic alignment refers to the process of aligning the visual
and caption features such that they are similar in the embedding space. In models like PDVC, only
video features are passed into the framework during training and inference. Therefore, we propose a
system that can instill caption information from a pretrained LM into the video features in order to
semantically align them with their corresponding captions. To do so, a video feature tuner is trained
through a contrastive loss with caption embeddings generated through a pre-trained LM. A more
in-depth description of this training procedure is discussed in section 5. A similar idea is explored in
CLIP [3] as discussed section 2.

2 Literature Review

SWINBERT: End-to-End Transformers with Sparse Attention for Video Captioning - A
new end-end fully transformer-based architecture called SWINBERT [4] for video captioning is
proposed. The SWINBERT model is a video-based pure-Transformer architecture designed for
caption generation. It consists of two modules: Video Swine Transformer (VidSwin) and Multimodal
Transformer Encoder. VidSwin is used to extract spatial-temporal video representations from raw
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video frames, while the Multimodal Transformer Encoder takes the video representations and outputs
a natural language sentence through seq2seq generation. The VidSwin module tokenizes the grid
features of the raw video frames along the channel dimension to generate video tokens. During
training, the Multimodal Transformer Encoder module performs seq2seq generation to form a natural
language sentence, with textual and visual modalities inputs, and uses a causal self-attention mask
to simulate a uni-directional seq2seq generation process. A percentage of word tokens are masked
and the multimodal transformer is tasked with predicting the masked tokens with the help of video
and other word tokens. All textual tokens have full attention to the video tokens. This helps with
improved training and improves the performance of the longer videos. However, during inference,
the SWINEBERT only takes in video inputs and generates an output natural language sentence. Not
surprisingly, using multimodal transformer architecture, SWINEBERT achieves better performance
than the previous state-of-the-art methods by a large margin.

End-to-end dense video captioning with parallel decoding - A dense video captioning framework
with parallel decoding (PDVC) [1] is proposed. Previous methods separate the task into event
localization and captioning forming a two-stage pipeline. This causes issues such as the downstream
captioning task being highly dependent on the quality of the generated event proposals. PDVC avoids
this by feeding the enhanced representations of event queries into the localization and captioning head
in parallel, creating a deep connection between the two tasks allowing them to be mutually optimized.
The overall model first adopts a pre-trained video feature extractor and transformer encoder to obtain
frame-level features. The features are sent through a transformer decoder to output an event counter
which ensures the correct amount of events predicted, localization head, and caption head. There
exists room for potential improvement on top of PDVC such as improving the video features being
passed into the transformer decoder with through semantic alignment.

Figure 1: CLIP Framework

Contrastive Language-Image Pre-training - CLIP is a powerful model that combines a large-scale
transformer-based language model with a convolutional neural network (CNN) for visual processing.
CLIP is centered on learning perception from supervision contained in natural language [3]. Learning
from natural language has several potential strengths over other training methods. As it does not
require annotations to be in a classic “machine learning compatible format”, it is much easier to scale
natural language supervision for image classification compared to standard crowd-sourced labeling.
A major motivation for natural language supervision is the large quantities of data available publicly
on the internet. A new dataset of 400 million image-text pairs was collected from publicly available
internet sources. Figure 1 below shows the summary of the current approach. CLIP jointly trains an
image and text encoder for the occurrence of possible image-text pairings across a batch. During
testing, the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or
descriptions of the target dataset’s classes. Since CLIP trains a text and image encoder simultaneously
to align their embeddings, its text encoder is ideal for our purposes.

3 Baseline Model

The baseline model selected for this project is PDVC [1]. PDVC decodes frame features extracted
from a Vision Transformer, into an event set with their respective locations and captions. Prior
dense video captioning methods utilize a two-stage “localize-then-describe” pipeline. However, the
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performance of two-stage methods limit the mutual promotion of these two sub-tasks due to its
reliability on the quality of the generated event proposals. To tackle this issue, PDVC aims to directly
exploit inter-task association at the feature level by applying localization and captioning heads in
parallel. PDVC is further improved by adding a novel event counter to estimate the number of events
in the video enabling PDVC to precisely segment the video into several event pieces while avoiding
the information missing along with unreliable event number estimation. This unreliable estimation
is what causes redundant caption generation. These attributes make PDVC a novel method over
existing dense captioning methods. When selecting a baseline, two main factors are considered. First,
a competitive video captioning framework with SOTA performance is desired. Second, a framework
where a LM can be introduced to perform semantic alignment is required. Through literature review,
PDVC and SWINBERT stood out in particular. However, in SWINBERT, the caption labels are
already being used during training alongside the video features. In PDVC on the other hand, only the
video features are being used allowing for potential improvements on the framework.

Figure 2: PDVC Framework [1]

Figure 2 shows the overview of the proposed PDVC. A deformable transformer with an encoder-
decoder structure is adopted to capture the inter-frame, inter-event, and event-frame interactions by
attention mechanism and produce a set of event query features. Next two parallel prediction heads
predict the captions for each event query simultaneously. The transformer decoder is stacked with an
event counter to further predict the number of final events. The final results are obtained by selecting
events with high confidence to ensure a complete and coherent story.

3.1 Deformable Transformer

Deformable Transformer is an encoder-decoder architecture based on multi-scale deformable attention
(MSDAtt). MSDAtt is useful for mitigating the slow convergence problem of self-attention in
Transformers when processing image feature maps. For a given multi-scale set of feature maps,
MSDAtt outputs a context vector by the weighted sum of sampling points across feature maps.

MSDAtt(qi, pj , X) =

L∑
l=1

K∑
k=1

AjlkWxl
p̃jlk

p̃jlk = ϕ(pij) + ∆pjkl

where p̃jkl and Ajkl are the position and attention weights of the k-th sampled key at the l-th scale
for the j-th query element, respectively. W is the projection matrix for key elements. ϕl projects
normalized reference points into the feature map at l-th level. δpjkl are sampling offsets w.r.t. ϕl(pj).
By incorporating deformable attention modules, the Deformable Transformer supplants the self-
attention modules in the Transformer encoder and the cross-attention modules in the Transformer
decoder. This alteration facilitates improved representation ability and faster convergence rates for
object detection.

3.2 Feature Encoding

Firstly, a pre-trained video feature extractor and transformer encoder are used to obtain a sequence of
frame-level features. To extract rich spatiotemporal features from a video, PDVC uses a pre-trained
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action recognition network, such as C3D or TSN, to extract features. Next, the feature map’s temporal
dimension is interpolated and rescaled to a fixed number for batch processing. Then, L temporal
convolutional layers are introduced to generate feature sequences at multiple resolutions, ranging
from T to T/2L. To leverage multi-scale features in predicting multi-scale events, the multi-scale
frame features are passed along with their positional embedding, into a deformable transformer
encoder. This captures the frame-frame relationship across different scales.

3.3 Parallel Encoding

The decoding network consists of a deformable transformer decoder and three parallel heads, a
captioning head that does caption generation, a localization head to predict event boundaries with
confidence scores, and an event counter to predict a suitable event number.

Localization Head The Localization head is responsible for predicting the 2D relative offsets (center
and length) of the ground-truth segment with respect to the reference point, as well as generating
the foreground confidence of each event query through box prediction and binary classification
respectively. Both these tasks are performed using a multi-layer perceptron. Once this process is
complete, the Localization head outputs a set of tuples to represent the detected events.

Captioning Head PDVC provides both a lightweight and standard captioning head. The lightweight
head feeds the event query q̃j into a vanilla LSTM at each timestamp. Then, the word wjt is predicted
by a fully connected layer followed by a softmax activation over the hidden state hjt. In video
captioning, Soft attention (SA) [5] is a popular component that can flexibly assign significance to
each frame during the word generation process. The conventional two-stage approaches [6] utilizes
event boundaries to align event segments and their corresponding captions, which poses a challenge
for our captioning model which lacks access to such boundaries. Consequently, it becomes harder to
establish connections between words and frames.

This issue is alleviated with the deformable soft attention (DSA) mechanism, which directs soft
attention weights towards a limited region around reference points. The DSA generates K sampling
points when generating t − th word wt. These sampling points are conditioned on both language
query of hidden state hjt and event query q̃j . In soft attention, the key/value is represented by K×L
sampling points, while the query is represented by [hjt, q̃j ]. Since the sampling points are distributed
near the reference point p̃j , the output features zjt of DSA are limited to attending on a relatively
small region. The LSTM takes in the concatenation of the context zjt, event query q̃j , and the
previous words wj,t−1 as input. Then the probability of the next word wjt is obtained through a FC
layer with softmax activation. As the LSTM evolves, it generates a sentence Sj where each element
is the word multiplied by the length of each sentence Mj .

Event Counter The event counter detects the number of events in a video, which is an essential
indicator of dense captioning. Counting too many events causes redundant captions, poor readability
and too few detected events means an incomplete story. The event counter comprises a max-pooling
layer and an FC layer with softmax activation. It first compresses the most important information
from the event queries {q̃j} into a global feature vector and predicts a fixed-size vector rlen, where
each value corresponds to the likelihood of a particular number.

During inference, the predicted event number Nset, is obtained by selecting the highest value in
rlen. To produce the final outputs, the event counter chooses the top Nset events with accurate
boundaries and high-quality captions from the N event queries. As the captioning head tends to
produce overestimated confidence for short sentences, the average word confidence is not a good
measurement of sentence-level confidence. Thus, a modulation factor γ to rectify the influence of
caption length and µ the balance factor is added to the confidence of each event query.

cj = clocj +
µ

Mγ
j

Mj∑
t=1

log(ccapjt )

Set Prediction Loss During training, PDVC generates a series of N events along with their cor-
responding locations and captions. The Hungarian algorithm [7] is used to establish a correlation
between the predicted events and ground truths in global schemes to obtain the most optimal bipartite
matching results. The set prediction loss is the weighted sum of gIOU, classification, countering, and
caption loss.

C = βgiouLgiou + βclsLcls + βecLec + βcapLcap
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where Lgiou represents the gIOU between predicted temporal and ground-truth segments, and Lcls

represents the focal loss between the predicted classification score and the ground truth label, Lcap

measures the cross-entropy between the predicted word probability and the ground truth, Lec is also
the cross-entropy loss between the predicted count distribution and the ground truth. The prediction
heads to each layer of the transformer decoder and the final loss is the summation of the set prediction
losses of all decoder layers.

3.4 Dataset

The effectiveness of PVDC is validated using the pre-existing large-scale ActivityNet Captions [8]
and YouCook2 [9] datasets. The ActivityNet Captions dataset includes 20,000 movies of people
engaging in various activities. Each movie lasts for roughly two minutes and contains four descriptive
sentences. For training, validation, and testing, the dataset is divided into three sections. Similarly,
the YouCook2 dataset contains 2,000 cooking films that are each about five minutes long and have
around eight annotated description sentences. For training, validation, and testing purposes, this
dataset is additionally divided into three sections. Due to computational constraints, only YouCook2
is used for the project. The overall train-test split is 75-25.

4 Baseline Evaluation

4.1 Evaluation Metrics

To evaluate the baseline model, the same four metrics are used as discussed in the PDVC paper.
BLEU4 [10], METEOR [11], CIDEr [12] and SODA_c [13]. BLEU4, METEOR, and CIDEr
calculate the average precision between generated captions and the ground truth labels. SODA_c
evaluates how well the generated captions reflect the story line of a given video.

BLEU - The BLEU metric is based on precision measurement and ranges from 0 to 1 where a
score of 1 means a perfect correspondence. The score is calculated between a generated caption
(candidate) and its corresponding label (reference). For any n, all candidate n-gram counts and their
corresponding reference counts are recorded. The candidate counts are then summed and clipped
by their corresponding reference maximum value. This value is then divided by the total number
of candidate n-grams. For a block of text, n-gram matches are first computed sentence by sentence.
Then, the n-gram counts are summed over all candidate sentences and are divided by the number of
candidate n-grams in the test corpus to calculate a modified precision score pn. Overall, the BLEU
score is calculated as:

BLEU = BP × exp(

N∑
n=1

wn log(pn))

BP is the brevity penalty that penalizes candidate translations for not matching the reference transla-
tions in length and wn are the weights corresponding to each n-gram modified precision score.

METEOR - METEOR builds on top of the BLEU metric by incorporating recall into the calculations.
The overall idea is based on matching unigrams and higher order n-grams not only through their
surface forms but also stemmed forms (eg. plural forms) and synonyms. With all the generalized
unigrams found, METEOR computes a score based on the unigram precision, recall, and a measure
of fragmentation to capture how well the generated caption is ordered compared to the reference
text. By incorporating recall, METEOR can capture correlation with human judgments. By taking a
weighted average of the unigram recall (R) and precision (P), the Fmean is calculated with:

Fmean =
10PR

R+ 9P

To factor in longer matches, a penalty is calculated for a given alignment. To do so, all the unigrams
in machine translation that are mapped to the reference are grouped into the fewest number of chunks
such that the unigrams in each chunk are in the same positions as the reference. This implies a perfect
translation would result in 1 chunk. The maximum of this penalty is 0.5 and the minimum is decided
by the number of matched unigrams. Finally, combining the penalty and Fmean score, the METEOR
score is calculated as:

S = Fmean × (1− Penalty)

5



CIDEr - The CIDEr metric is another popular automatic image descriptor evaluation metric. It
measures the similarity of a generated sentence against a set of ground truth sentences written by
humans. Similar to METEOR, CIDEr also incorporates both recall and precision. CIDEr aims to
evaluate how well a candidate sentence matches the consensus of a set of image description sentences.
Intuitively each sentence is split into a set of n-grams, and a consensus is drawn based on how often
these set of n-grams are present in the reference sentences. Similarly,n-grams that are not present in
the reference sentences are not in the candidate sentence, and n-grams that occur across all images
provide little information and are given a lower weight. This is mathematically modeled through a
Term Frequency Inverse Document Frequency (TF-IDF) weighting for each n-gram. the CIDEr score
for n-grams of length n is computed using the average cosine similarity.

CIDErn(ci, Si) =
1

m

∑
j

gn(ci) · gn(sij)
∥gn(ci)∥ ∥gn(sij)∥

where gn(ci) is a vector formed by gk(ci) corresponding to all n-grams of length n and ∥gn(ci)∥ is
the magnitude of the vector gn(ci) .

SODA_c - In the research community, the official dense video captioning scorer computes the
averaged METEOR scores for matched pairs between generated and reference captions whose
Intersection over Union (IoU) exceeds a specific threshold. However, it doesn’t take into account
the story or the context of the video and tends to allocate high scores to redundant captions as well.
Story Oriented Dense Video Captioning evaluation framework (SODA) aims to find temporally
optimal matches between generated and reference captions and penalize the redundant captions using
F-scores from the METEOR scores for the matching captions. The F-measure scores for redundant
captions are calculated using precision and recall, such that high amounts of captions tend to give low
precision scores and high recall scores.

Fmeasure(G, J) =
2× P (G, J)×R(G, J)

P (G, J) +R(G, J)

where G is a set of manually-generated reference captions for a video and J is a set of captions
generated by a system.

5 Implementation

On top of the existing PDVC baseline framework, modifications were introduced to improve the
quality of video features being fed into the transformer encoder through semantic alignment. This
was implemented using the pretrained text encoder to inject wisdom into the extracted video features.
To achieve this, a framework as shown in Figure 3 was used. In this framework, the video captions
are fed directly into CLIP’s [14] frozen pre-trained text encoder. Simultaneously, the extracted video
features are fed through a neural network called the video feature tuner. The output of this tuner and
the text encoder are compared through a cosine similarity loss in order to align their outputs and
this loss is used to update the video feature tuner weights. However, there is a dimension mismatch
between the video and caption embeddings. CLIP’s text encoder outputs caption embeddings with the
dimensions of BxWx768 were W is the number of words in the caption and the video embeddings are
of shape Bx200X3072 where 200 is the temporal dimension. Therefore to compare them using the
aforementioned loss function, two steps are taken. First, an average is taken over the W dimension
of the caption embedding to get the final shape of Bx768. Second, for the video embeddings, each
are passed through a single layer network called the dimension matcher and an average is taken
across the temporal dimension to also arrive at a shape of Bx768. In this way, the caption and video
embeddings can be compared. This compression of the temporal dimension may result in the loss of
information, an issue further discussed in section 8.

Once this training is over, the video feature tuner is frozen and inserted into the PDVC as shown
in figure 4. Ideally with this trained tuner, it can incorporate some information from the CLIP text
encoder into the video feature embeddings of unseen videos. With this addition, the overall PDVC
framework is trained from scratch using YouCook2 to see whether some degree of semantic alignment
was achieved. The performance of the model is evaluated with the same metrics as the PDVC baseline:
BLEU4, METEOR, CIDEr, and SODA_c.
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Figure 3: Tuner Training Process

Figure 4: Tuner Integration into Existing PDVC Framework

Throughout this process, we experimented with a variety of tuner network architectures . The
architecture details can be seen in Table 1. One note to make here is that Conv2 and Conv1 are just
convolutions across different dimensions. Conv1 assumes the channel dimension to be the feature
size and Conv2 assumes the channel dimension to be the temporal dimension. The results of each of
these models can be found in section 6.

Table 1: Tuner Architecture Details

Architecture Description
Linear 2 Linear(3072,3072) layers with BN and Gelu activation
Conv1 2 depth wise Conv1d(3072,3072,5,2) layers with BN and Gelu activation

Conv1 w/ linear Conv1 with 1 BN and Linear(3072,3072) layer
Conv2 depth wise Conv1d(200,200,5,2) layers with BN and Gelu activation

6 Results

The baseline PDVC and the modified PDVC ablation results can be found in Table 2. Baseline
implementation results are slightly different from those reported in Teng et al. [1]. Through our
ablations, it was discovered that the results differ slightly every time the model is trained, meaning
there is some variance with how the model may perform. However, the reported baseline results are
similar enough to those reported by the paper that we felt comfortable proceeding with testing the
modifications.

After training the tuner, it is frozen and placed within the PDVC framework. Subsequently, the rest
of the PDVC pieline was retrained to evaluate the impact of semantic alignment on dense captioning.
Again, the results are evaluated with BLEU4, METEOR, CIDEr and Soda_c. From Table 2, it is
shown that Linear, Conv1 and Conv1 w/ Linear all outperform the baseline in at least three of the
given metrics. In fact, Conv1 outperforms in all four metrics suggesting that it unilaterally improved
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the precision, recall and also the overall story telling capabilities of PDVC. Although this is the case,
Conv1 is still outperformed in the METEOR metric by Linear, so there definitely still remains room
for improvement.

Conv2 model presented the lowest score across all evaluation metrics even compared with the
baseline, indicating poor performance in generating captions for videos. This can be due to the low
amount of model parameters compared to the other models. Fewer parameters may have limited
its capability to perform proper semantic alignment and once the visual features are passed through
it, no improvements are made in quality. In fact, the addition of Conv2 acted as a bottleneck to the
overall framework.

Table 2: Ablations Study on Modified PDVC (bolded terms represent improved performance)

BLEU4 METEOR CIDEr Soda_c
Baseline 0.76 ± 0.05 4.39 ± 0.07 20.68 ± 0.21 4.47 ± 0.87
Linear 0.87 ± 0.06 4.74 ± 0.09 21.76 ± 0.04 4.45 ± 1.13
Conv1 0.90 ± 0.02 4.53 ± 0.07 22.32 ± 0.05 4.50 ± 1.48

Conv1 w/ Linear 0.77 ± 0.15 4.48 ± 0.02 21.07 ± 0.92 4.47 ± 1.49
Conv2 0.40 ± 0.08 3.35 ± 0.01 14.34 ± 0.02 3.53 ± 0.71

7 Discussion

In conclusion, our study demonstrated the significant impact of semantic alignment on the perfor-
mance of dense video captioning. Specifically, models trained with semantic alignment can achieve
higher scores across all evaluation metrics, indicating better overall performance in caption generation.
However, a high observed variance between the metric scores of models was noted, which could be
attributed to the limited dataset size of YouCook2. This suggests that further research is needed to
determine the optimal training data size and quality needed to achieve consistent performance across
different metrics.

In addition, it is directly shown that an improperly trained and constructed tuner model such as
Conv2 can hinder the performance of PDVC across all evaluation metrics, stressing the importance
of investigating optimal tuner model architectures.

Nevertheless, this project highlights the importance of considering semantic alignment when gener-
ating video captions. Additionally, the results provide insight into the strengths and weaknesses of
different architectures and evaluation metrics for dense video captioning, which could inform the
development of more effective models in the future.

8 Future Work

Future work in dense video captioning could further evaluate the viability of the model and address
its limitations. Possible extensions include training the model on larger and more diverse datasets,
such as ActivityNet. Theoretically, this should help improve the model’s generalizability to a wider
range of videos and the overall stability of the model across different evaluation metrics. Additionally,
other tuner architectures can be explored, such as transformer-based models or models with attention
mechanisms, to further improve performance.

While we used CLIP as the primary text encoder in our study, other text encoders may provide better
semantic alignment, and testing other text encoders could fine tune the performance of our model.
Furthermore, the current method of matching dimensions between the video and text embeddings
can result in the loss of information. Therefore, to achieve more sophisticated semantic alignment,
other methods of dimension matching will be investigated. Possible solutions include scaling up the
dimensions of the text embeddings instead of scaling down video embeddings. Instead of taking an
average across the temporal dimensions, models where the temporal dimension is preserved could be
explored as well.

Overall, the results of this study provide a foundation for further research on improving the per-
formance of dense video captioning models, and demonstrate the impact of semantic alignment in
models of this type.
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