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Abstract—In this paper we show a trajectory planning tech-
nique that mimics a monkey bar robot swinging from bar to bar.
Using a hybrid system direct collocation (DIRCOL) trajectory
optimization, we successfully demonstrate the robot swinging
up from a dead hang to catch the first bar and swing to the
subsequent bars. This DIRCOL technique was tested on various
mass distributions in the robot as well as different bar separation
distances to understand the behavior with varying parameters.
In addition, we show the importance of a free time setup on the
cost function in producing consistent feasible trajectories using
this DIRCOL technique.

Code for this project can be found here:
https://github.com/ologandavid/MonkeyBarBot

Index Terms—Trajectory Optimization, Brachiation, Two-Bar
Linkage, DIRCOL

I. INTRODUCTION

In recent years, developing versatile locomotion systems
has attracted significant interest among robotics researchers.
Motivated by the desire to have robots operate in increasingly
complex and unpredictable environments, the need for robots
to react quickly and plan effective trajectories in a variety of
conditions has become ever more important. Many researchers
have attempted to solve this issue by mimicking the motion of
living animals. Brachiation robots, inspired by the movement
of primates, present an alternate form of locomotion that
enables robots to traverse across large gaps, move through
trees, or climb vertical surfaces. Using a combination of
swinging and grasping, brachiation robots can access areas
where legged, wheeled or articulated platforms might fail.

Fig. 1. Continuous Contact Brachiation of a Gibbon

With potential applications ranging from search and rescue,
surveillance and reconnaissance, and the exploration of haz-
ardous environments, a reliable trajectory planning algorithm
capable of handling intermittent contacts is necessary. How-
ever, controlling the motion of brachiation robots remains a
challenging problem given the complex nonlinear behavior of
their kinematics as well as the particular handing of its hybrid
modes.

To truly model the dynamics of a swinging primate, a 4-
link robot with 6 actuators would be needed to accurately

describe the wrist, elbow and shoulder joints. [1] Given the
complexity of the system, we ignore the wrist joints and
assume ”sticky” inelastic contacts with the bars. Additionally
we simplify our dynamics by ignoring the elbow joints,
considering only the motion of the shoulders. We find that
these dynamics mirror those of a hybrid Acrobot. As such we
propose a simplified dynamics model of a two link brachiation
robot, and an associated direct collocation (DIRCOL) based
approach for its trajectory planning. We verify its performance
in simulation using MeshCat and Julia libraries, on a variety
of bar orientations.

This paper aims to present the following.

1) Review the current state of the art in brachiation robotics
2) Present a simplified dynamics model of a two link

brachiation robot
3) Introduce a DIRCOL based approach for trajectory

optimization
4) Analyze the impact of various hyperparameters on the

solved trajectory

The remainder of this work is organized as follows. Sec.
II summarizes the related works. Sec. III-A, B describes
a derivation of the kinematics of a simple two link robot,
while Sec III-C describes our DIRCOL based approach for
trajectory optimization. Subsequently, simulated results and
solved trajectories are presented in Sec. IV, and V.

II. RELATED WORK

A. Other Brachiation Platforms

Prior work has demonstrated other approaches at building
and simulating brachiating robots. One of the earliest ren-
ditions of these robots was in fact a two-link robot, with a
singular control input between the links. Utilizing a feedback
control method that planned for continuous regular contact,
the robot could traverse a course of evenly spaced bars. [2]
Other brachiator robots like the JPL Brachiation Bot built on
these advances, incorporating two additional links capable of
traversing interspersed ledges. It implemented a four-phase
hybrid movement, including a release, body reversal, swing
up, and grasping phase. [3] Limitations in hardware due to
structure of the grippers and issues with handling contact have
also led researchers to pursue simulation based approaches. [4]
[5] In response, other researchers have modeled the dynamics
of swinging robots by treating contacts with the bar as
distinct events, using reset maps to correct the dynamics after
grabbing. [6]



B. Acrobot

After simplifying our dynamics, to those of a two link robot,
we find that the dynamics during each swing phase resemble
those of a double pendulum. These dynamics, are similar to
those of a gymnast, with the top link pinned at bar, and a
freely rotating second joint between the links. A more detailed
analysis of these dynamics can be found here. [7] [8] This
simplification allows the robot to move its shoulder to generate
momentum to swing, with the pinned joint mimicking the
hand in contact with the bar, and the free joint mimicking
the hanging end of the pendulum. [1]

C. Control with DIRCOL

Trajectory Optimization for brachiating robots through com-
plicated terrain has been approached using a variety of pro-
cesses. Most recently a variation of iLQR and a PID tracking
controller to was used to find the optimal trajectory of each
swing phase allowing it to traverse bars with a variation in
spacing. The method was even used to inform the robots’
design by comparing the cost among different body lengths.
[9] More traditional robust control Lyapunov methods have
also been applied, incorporating barrier functions to handle
the constraints and dynamic uncertainties of the motion.
[10] AcroMonk, a two link brachiator, showed success when
utilizing TVLQR, PD control, and reinforcement learning
based policies in its control. [11] More complex approaches
like NMPC have also been implemented, in favor of its
ability to directly incorporate the constraints directly into
the optimization problem. [12] Direct Collocation methods,
summarized here [13] hold unique promise in their ability
to yield dynamically feasible trajectories, but suffer in their
handling of contact constraints.

III. METHODS

A. Dynamics

We model Monkey Bar robot as a two-link pendulum, where
the body mass is considered negligible compared to mass and
inertia of both links. The variables in the dynamics are defined
as in Fig.III-A.

We model the dynamics as piece-wise continuous. In
between the bars, only one arm holds on a bar and the
dynamics as continuous. After reaching the next bar, a reset
map is applied to transit into the next phase. The spacing
between bars is assumed to be varying for generalized results
but the height of each bar is assumed to be constant.

a) Continuous Dynamics:
We derived the dynamics of the continuous phase based on

the assumption that one arm is always grabbing on the bar, so
there’s no need to set up constraints on the end of the arms.
Starting from the kinetic energy and potential energy terms in
Lagrange equation:

Fig. 2. Variable definition
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Collecting all the terms from Eq.2-4, we could write the entire
dynamics as:

0 = M

[
θ̈1
θ̈2

]
+B +G−Υ (5)

⇒
[
θ̈1
θ̈2

]
= M−1(Υ−B −G) (6)

M =

[
m11 m12

m12 m22

]
(7)

m11 = m1l
2
1 +m2[l

2
1 + l22 + 2l1l2cos(θ2)] + J1 + J2

m12 = m2[l
2
2 + l1l2cos(θ2)] + J2

m22 = m2l
2
2 + J2

B =

[
b1
b2

]
=

[
−l1l2m2sin(θ2)(2θ̇1θ̇2 + θ̇22)

−l1l2m2sin(θ2)θ̇
2
1

]
(8)

G =

[
(m1 +m2)gl2cos(θ1) +m2gl2cos(θ1 + θ2)

m2gl2cos(θ1 + θ2)

]
(9)

Υ =

[
0
τ

]
(10)

b) Reset Map:
To complete the model of the system, a reset map is

needed to transition from the final state of one phase to the
initial state of the next phase. This is accomplished through
the reset map shown below.

g(X) =


−(π −X[1])
−X[2]

0
0

 (11)

Where X is the final state of the previous phase.

This reset map allows for use of a single dynamics equation
thus reducing the complexity of the problem. The relation
between initial and final states of the current and previous
phases respectively were derived using trigonometry.

B. Constraints

For feasible trajectories, three sets of constraints were
necessary. The first of these constraints is the primal bounds
on the state variables and control inputs. No constraints were
necessary for the state variables. Constraints on the time step
were necessary, however, to ensure that the final result was
feasible. The upper and lower bounds on this time step were
set to be half of the goal time step and 2 times the goal time
step respectively.

Equality constraints were added for initial conditions, ter-
minal conditions, and dynamic feasibility. Initial and final
condition constraints were used to constrain the problem to
start and end in specific configurations described above in
Reset Map. can be found using trigonometry to calculate the

exact angles needed for initial and final states depending on
bar separation and link length.

Since this problem can be converted into many separate
sup-problems that have simple pendulum dynamics, the only
dynamics constraints needed are for the 2-link pendulum
problem. The jump map is only necessary for calculating
the initial conditions for the following sub=problem trajectory
optimization once the previous sub-problem has solved.

Constraining the final velocities to be zero is also critical
for making this problem dynamically feasible. Under this
assumption, we can neglect reaction forces once contact is
made with the next bar thus reducing the complexity of the
jump maps from final state of one sub-problem to initial state
of the next.

C. Trajectory Optimization

A hybrid system direct collocation (DIRCOL) approach
was used for trajectory optimization. For the hybrid systems
analysis, the problem was broken up into 2 sub-problems that
could be solved independently. The problem was divided into
a swing up phase, where the robot starts from a dead hang, and
a bar to bar phase, where the robot starts hanging on both bars,
swinging to the next bar. These two trajectories are pictured
in Fig.3.

Two conditions are required for this problem setup to be
valid: (1) the initial conditions of the bar to bar phase have
to be the final state of the previous phase and (2) the final
conditions for all phases have to have zero angular velocity.

Condition (1) can be satisfied through the reset map shown
above. This reset map is only valid for the case where the bar
height remains constant. Without keeping this height constant,
inverse trigonometric functions are required to solve for the
transition angles which can result in DIRCOL failing to find
a feasible trajectory.

Condition (2) removes the need to calculate reaction forces
at the bar during contact. This reduces the complexity of the
dynamics functions and thus simplifies the problem as a whole.

For this DIRCOL implementation, a simple quadratic cost
function was used shown in (8). A simple cost on the state
was used to encourage smaller magnitude angles in the final
solution. This was also utilized for the input torque as well. In
order to allow the solver to fit the natural pendulum dynamics,
the time step for each iteration was also included as an input
to the system with a reference cost placed on it. This reference
cost placed a penalty on how far away the solver strayed from
some goal time step.

Shown below is the final equation used for this trajectory
tracking approach:
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Fig. 3. Breakdown of hybrid trajectory

Subject To:
xk+1 = f(xk, uk) for i = 1, 2, . . . , N − 1 (13)
x0 = xinit (Initial Condition) (14)
xN = xgoal (Terminal Condition) (15)
ulb ≤ uk ≤ uub (Torque Limits) (16)

Where Q, Qf , and R are the cost matrices discussed
previously.

D. Implementation

For this implementation of DIRCOL, an IPOPT solver was
used inside of the following pseudocode:

Algorithm 1 Monkey Bar Trajectory Optimization
Require: Robot dynamics f , control weight matrices

Q,R,Qf , sub-problem parameters Nsub−problem,
Bargoal

1: Initialize dynamics, etc. parameters
2: for i = 1 : NBars do
3: if Starting configuration then
4: Xic ← Dead Hang
5: else
6: Xic ← g(Xprev[end]) {Reset Map}
7: end if
8: Xg ← calculateGoalAngle(barSeparation)
9: xl, xu ← primal bounds

10: z0 ← Initial Guess Trajectory {zeros + noise}
11: Zi ← Solve Dircol Trajectory Optimization
12: Xi, Ui, ti ← Zi

13: X,U, t ← Xi, Ui, ti
14: end for=0

This algorithm was repeated for each different set of initial
conditions tested.

An iPOPT solver was used for this DIRCOL implementa-
tion taking in the cost function, equality constraints, inequality
constraints, and bounds on all variables.

IV. RESULTS

We implemented the afore-mentioned optimization method
in Julia and tested the generated trajectory in simulation. Fig.5
shows the full trajectory with bars evenly spaced away from
each other at 1.5m. Fig.6 shows the joint angles during this
motion. Fig.7 shows the joint torque from actuator. In addition
to the nominal trajectory, the solver was also used to test
varying mass ratios and bar lengths across the horizon. Table
shows the parameters for the various tests.

As shown in Fig.5, the robot successfully traverses the set of
5 bars starting from a dead hang. Also depicted in Fig.5 is the
swing up behavior for this particular bar spacing and mass
ratio. The optimal swing up trajectory for these conditions
follows very closely the natural frequency of the fully extended
double pendulum.

Fig. 4. Animation of monkeybot in motion in meshcat

Once this initial simulation was working, tests were per-
formed with varying bar distance and mass ratios between feet
and hip joints. Table I shows the parameters used for testing



Fig. 5. Monkeybot full trajectory

Fig. 6. Joint angles vs. Time

Fig. 7. Joint torque vs. Time

varying mass ratios. Fig.8 shows the results from this mass
ration test in terms of joint angles over time. Table II shows
the parameters used for varying bar separation distance. Fig.9
shows the results of this varying bar separation test in terms

of joint angles over time.

Test No. Mass 1 Mass 2
Test 1 1 1
Test 2 2 1
Test 3 5 1
Test 4 1 2

TABLE I
TESTING PARAMETERS FOR VARYING MASS RATIO TESTS

Bar Separation
Test No. Bar 1 Bar 2 Bar 3 Bar 4 Bar 5
Test 1 1.1 1.1 1.1 1.1 1.1
Test 2 1.5 1.5 1.5 1.5 1.5
Test 3 1.8 1.8 1.8 1.8 1.8

TABLE II
TESTING PARAMETERS FOR VARYING BAR SEPARATION

During testing, cost function was found to be critical to the
solver converging to a feasible solution. Many variants of the
cost function described above were tried including minimum
time variants that attempted to minimize the time taken for
this swing action to occur. While some feasible trajectories
were produced, it was not consistent with the solutions and
seemed to be very volatile to initial conditions. The free time
implementation used for the final round of testing resulted in
the best convergence rate and the most reasonable results.

In addition to the cost function itself, the weighting matrices
also had a large effect on the feasibility and sensibility of
the DIRCOL results. These weighting matrices were deli-
cately tuned until reliable convergence was reached. The final
weights that produced consistent feasible results placed higher
weight on time step drift and state value rather than input
torque.

V. DISCUSSION

Examining the results of the weighting matrices, having
a higher cost on the time step drift allowed the solver to
choose a time step that fit the natural dynamics of the double
pendulum without going too far away from the goal time
step. This resulted in smoother trajectories. Critical to this
convergence was also the constraints on the time step itself.
These constraints prevented the solver from ”cheating” physics
and choosing time steps that were physically impossible but
numerically possible.

In addition to cost function, the mass ratio between the hip
(mass 1) and the feet (mass 2) also had a large effect on
the resulting solution. When increasing the mass at the hip
joint relative to the feet, the resulting trajectory reflected more
closely that of the fully extended double pendulum. As shown
in Fig.8, the mass ratio of 5 : 1 had much smaller theta 1 peaks
than each of the other tests increasing to a maximum when
the mass ratio was 1 : 2. In addition, Fig.8 demonstrates the
same phenomenon where θ2 is used more to move the system
when the mass at the hip is larger. This fits with the way the
weighting of the states was set up to penalize input torque.



Fig. 8. Joint angle vs. Time for varying mass ratio tests

Fig. 9. Joint angle vs. Time for varying bar length tests

Since torque wasn’t very heavily penalized, moving θ2 fast to
generate momentum in the system became less costly.

Looking at the tests with changing bar length, the swing
up trajectory changes depending on how far away the next
bar is. Looking at Fig.9, the optimal trajectory when the bars
are close together appears to be swinging up into a single
pendulum configuration before reaching out for the next bar.
This suggests that the action of swinging out to catch the
next bar is more costly as the bars get farther apart which
intuitively makes sense. More torque is required to complete
that extension motion as the bars get farther apart which is
why the solver ends up with an extended swinging trajectory
for the farther separated bars.

VI. CONCLUSION

After running various tests with various different cost func-
tion implementations, a simple quadratic cost function pro-
duced the most consistently feasible and meaningful results.
Significant tuning of this cost function was required to get
consistent feasible trajectories from the DIRCOL solver. This
tuning included placing higher weights on the state variables
and lower weight on input torque as well as implementing

a tracking cost on the time step at each iteration of the
trajectory. This free time setup allowed the solver to follow
the natural pendulum dynamics resulting in very smooth
reasonable trajectories.

In addition to cost function setup, mass ratio and bar
separation were also crucial to the behavior of the final
trajectory. Both increasing the mass of the feet and decreasing
bar separation distance resulted in unusual pendulum behavior
where the optimal trajectory was to swing up into a single
pendulum like system before swinging out to the next bar.

Future work could extend this to hardware using some
type of trajectory tracking controller to test whether these
trajectories are actually physically feasible. In addition, this
approach could also be extended to grab onto bars that are of
different heights.
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