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Abstract— This paper explores multi-robot motion planning
strategies for quadruped robots. Here, we present three distinct
methods: a sequential RRT-Connect (Rapidly Exploring Ran-
dom Tree Planner), a joint state-space RRT-Connect Planner,
and a Conflict Based Search. Our study showcases the success
of each approach by generating kino-dynamically feasible and
collision-free body trajectories for multiple legged robots nav-
igating diverse terrain. Leveraging Quad-SDK, a open-source
ROS-based framework designed for quadruped locomotion, we
incorporate its footstep planner and low-level motor controller
to implement these strategies. Applying all three global planner
techniques proved successful in most scenarios with the conflict
based planner approach having the lowest cost to goal. The
sequential RRT also had the quickest solve time due to the
simplicity of its approach.

Code and implementation details available at:
github.com/ologandavid/multi-robot-quad-sdk

I. INTRODUCTION

In recent years, there have been notable advancements in
the field of multi-agent motion planning. Motivated by the
desire for increasingly collaborative and coordinated actions
in robotics, researchers have attempted to solve this issue by
employing a variety of sampling based algorithms. In spite of
this recent success, quick and effective multi-agent planning
for legged robots remains elusive.

Quadrupedal robots have demonstrated their ability to
successfully navigate difficult environments particularly in
those were wheeled platforms might fail. In order to realize
the benefits of legged robots for tasks like exploration,
warehouse robotics, and search and rescue, legged robots
must be able to chart collision-free paths with each other
while negotiating increasingly complex and unpredictable
environments. As such we explore a variety of common
planning algorithms to see which presents the best perfor-
mance in allowing multiple quadruped robots to interact and
collaboratively plan efficient trajectories.

To tackle the complex multi agent trajectory planning
problem as it applies to quadrupeds, our paper presents the
following three methods:

1) Sequential RRT, that first solves for the path of an
initial robot, and then constrains all subsequent solves
with the sequence of states corresponding to its path

2) Joint Space RRT, which simultaneously plans in the
state space of n robots

3) Conflict-Based Search, that iteratively calls a low-level
planner, and re-plans with constraints to address path
conflicts
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Fig. 1. Multiple quadruped robots performing collaborative lifting tasks.
The versatility of legged platforms is showcased by their ability to adjust
step size and climb elevated terrain efficiently; making them ideal for
applications like search and rescue and urban locomotion.

The remainder of this work is organized as follows. Sec. II
summarizes the related works. Sec. III-A, B, C, D describes
the state representation of each respective planner, and their
individualized implementation details. Subsequently, simu-
lated results and solved trajectories are presented in Sec. IV,
and V.

II. RELATED WORK

Prior work has demonstrated various approaches towards
solving the multi-robot planning problem. Sampling based
planners seem to be the common thread, as [1], implemented
a kino-dynamic sequential and joint RRT* for UAV’s. Sim-
ilarly, [2] utilized a Multi-Robot RRT* that scaled well
for up to 10 robots. These approaches are less feasible for
quadruped robots given that they either scale poorly as the
number of robots increase, do not consider that the state
space of a quadruped is much more complex than that of
a UAV, or over-constrain the system during planning. An-
other common approach to multi-agent planning is Conflict
Based Search [3], which avoids over-constraining robots by
resolving path conflicts as they appear during planning. [4]
demonstrates the effectiveness of such an approach using
non-linear dynamics and MPC as its low level controller.

Notably, these methods have yet to be more widely
extended to legged platforms like quadruped robots. Avail-
able quadruped locomotion tools like Quad-SDK currently
support multi-robot visualization [5], and fast global motion
planning for a singular agent. [6] However, the platform lacks
support for multi-robot planning and simulation, particularly
as the number of agents increases beyond one. As such, this
project aims to extend each of these methods into Quad-
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SDK, leveraging its modular structure, visualization tools,
local footstep planner for our implementation.

III. METHODS

A. State Formulation, RRT-Connect

In order to effectively plan trajectories for each quadruped
robot, key simplifying assumptions are made. First, the mass
of the legs is assumed to be much less than that of the
body, allowing for their exclusion during high level planning
as the dynamics of the robot remain relatively unchanged.
Next, we assume the nominal roll of the robot to remain
relatively constant and that motion primitives for the robot
during stance and flight phase can be approximated as piece-
wise polynomials. More details on this representation can
be found here [6]. For our sampling based planner, the
representation of discrete time robot states is defined as a
vector of robot body position, orientation and velocity. Note
here that in the joint case, the size of this vector is scaled
appropriately to the number of robots. Start and goal states
are defined similarly, except the velocity portion is 0;

s =

[
q
q̇

]
(1)

s =
[
qx qy qz qp q̇x q̇y q̇z q̇p

]T
(2)

Given the complexity of the state space of the system,
the low level planner runs an RRT-Connect for speed. The
algorithm is as follows with a few notable differences.
During connect and extend operations, intermediate states
are interpolated, and checked for kino-dynamic feasibility.
Additionally, in both the sequential and CBS approaches,
the collisions with the other robot path or against constraints
are checked for validity.

Algorithm 1 RRT-Connect
1: Input: Initial configuration qinit, goal configuration qgoal,

search space X , step size ∆q
2: Output: Path P from qinit to qgoal (or failure)
3: Initialize tree Tinit with node qinit
4: Initialize tree Tgoal with node qgoal
5: while ¬ReachedGoal(Tinit, Tgoal) do
6: qrand ← RandomConfig(X)
7: qnearest ← NearestNode(Tinit, qrand)
8: qnew ← Steer(qnearest, qrand,∆q)
9: if ValidEdge(qnearest, qnew, X) then

10: Add qnew to Tinit with qnearest as its parent
11: end if
12: Swap Tinit and Tgoal
13: end while
14: P ← ExtractPath(Tinit, Tgoal)

return P

After each RRT call, path length and solve time are
recorded, and the paths are post-processed. The path is then
interpolated over time with a fixed dt. For the purposes of
this report, 0.03 seconds was the assigned dt.

B. Sequential RRT Planner

The Sequential RRT planner is the simplest way to in-
tegrate multiple robots or agents in a single planning solve.
This planner adopts a series based solving approach for each
planner per robot. The planner provides all ’priority’ to the
first robot by solving it in a configuration space excluding
all other robots. It employs the RRT algorithm to find an
optimal path from the robot’s starting point to its destination.
This involves randomly exploring the space, growing a tree-
like structure from the start towards the goal, and iteratively
refining the path to optimize it.

Once an optimal path is determined for the initial robot,
the next crucial step is path interpolation. Here, the planner
increases the resolution of the path by adding intermediate
way points. Before post processing the final path of the
first robot, a linear interpolation is constructed between the
waypoints of the first robots path [1]. This granulation of the
path ensures a more detailed and smooth trajectory, essential
for precise path planning of the sequential robots in the
planner order.

For the next robot, the planner utilizes this interpolated
path of the initial robot as a temporary conflict to avoid
collision. During the random state generation phase, this new
path is fed as a vector of states and is added as a conflict.
Secondly, during the extend phase, the extended path of
the second robot is checked against the interpolated plan of
the first robot. The planner checks for conflicts against this
existing path. By considering the already planned path of the
initial robot, the planner effectively guides subsequent robots
away from the trajectories of previously occupied robots.
This ensures their path is conflict-free. The psuedocode for
this planner is shown below in alg 2.

The sequential planner falls short in ’tight’ areas where
only one robot can fit at time. The sequential planner gives
priority to the first robot and excludes those points for the
following robots. A time based conflict interpolated vector
was created for the first robot. This tweak looked at the
distance of the current state of the second robot to all
interpolated states of the first robot. Any states outside the
time range of the second robot distance was eliminated
from the search of collision to first robot. This ensured a
state was not blocked for the whole duration of the plan.
This simplified time assumption allowed for robot paths to
cross while ensuring the robot’s bodies do not collide [6].
Sequential approach allows for coordinated planning among
multiple robots, making it a robust solution for complex
multi-robot systems. However, this approach still falls short
in terms of path quality and in scenarios where two robot’s
goal position are very close. in this scenario, the path of
the second robot could be cut off as the planner is trying to
around tight spaces.

C. Joint Space RRT Planner

The Joint Space RRT Planner represents a pivotal approach
in the realm of multi-robot coordination, specifically ad-
dressing the intricacies of planning in a shared environment.
Unlike the sequential RRT planner, which handles robots



Algorithm 2 Kinodynamic Sequential RRT-Connect Planner
1: Q,nroot, p1, p2 ← ∅
2: p1 ← RRTCONNECT
3: FinePath1 ← INTERPOLATEPATH(p1)
4: CollisionChecker ←

CREATECOLLISIONCHECKER(FinePath1)
5: p2 ← RRTCONNECT(CollisionChecker, ∅)
6: nroot ← (p1, p2), cost
7: Q.push(nroot)
8: while ¬(Q.empty()),¬(goal reached) do
9: cnode ← Q.top()

10: C ← checkCollisions(cnode.plans(), d)
11: if C.empty() then
12: return cnode.plans()
13: else
14: Q.pop()
15: for each robot i in Ci do
16: K ← convertCollisionConstraint(Ci)
17: pi ← RRTCONNECT(Mi, O, xi,0, xi,f ,K, d)
18: s← (pi, other plans), cost
19: Q.push(s)
20: end for
21: end if
22: end while

individually in a priority order, the Joint Space RRT planner
operates by considering the combined configuration space
of both robots simultaneously. This approach begins by
generating two random configurations, conceptualized as a
single ’point’ in the joint space of the robots. This point
essentially represents a combined state where each compo-
nent corresponds to the position and velocities of each of the
robots. By solving the path planning problem in the joint
space, the planner effectively coordinates the movements
of both robots in a way that is not only efficient but also
inherently mindful of the other’s presence [5]. This leads to
a more integrated and harmonious movement strategy, crucial
for scenarios where robot interaction is constant and highly
dynamic.

While proving effective, this approach increases the solve
time substantially as a path needs to be found in the joint
space; thus increasing the degrees of freedom from 6 to 12
for just 2 robots. As the number of robots grow, the solve
time exponentially grows as the degree of freedom for the
configuration space goes up by 6 per robot. As a result,
hypothetically this planner will have the longest solve time.

To avoid the random configuration of both robots gen-
erating two points within conflict range, the random points
were biased away from each other. In detail, the first robots
configuration was first randomly found and the second robots
state points were biased away from the first robot to ensure
there was no internal collision when solving for the plan
in the joint space. Additionally, the new struct incorporated
both robots when extending to the final position and finding
if there is a collision. To ensure kinodynamic extension,
each robot was individually extended and if there was a

collision with an object the final extended path is fed as
the new state point to be created [7]. Hence, the joint space
closely followed the RRT-Connect structure while adding
extra paremeters for the additional robot states. The psuedo
code for the implementation of this algorithm is given below
and shown in alg 3.

Algorithm 3 Kinodynamic Jointspace RRT-Conmect
1: Input: Initial configurations qinit1, qinit2, goal configura-

tions qgoal1, qgoal2, search space X , step size ∆q
2: Output: Joint Path P from (qinit1, qinit2) to (qgoal1, qgoal2)

(or failure)
3: Initialize trees Tinit1 with node qinit1 and Tinit2 with node

qinit2
4: Initialize trees Tgoal1 with node qgoal1 and Tgoal2 with node

qgoal2
5: while ¬ReachedGoal(Tinit1, Tgoal1, Tinit2, Tgoal2) do
6: qrand1 ← RandomConfig(X)
7: qrand2 ← BiasedRandomConfig(qrand1, X)
8: qnearest1 ← NearestNode(Tinit1, qrand1)
9: qnearest2 ← NearestNode(Tinit2, qrand2)

10: qnew1 ← Steer(qnearest1, qrand1,∆q)
11: qnew2 ← Steer(qnearest2, qrand2,∆q)
12: if ValidEdge(qnearest1, qnew1, X) then
13: Add qnew1 to Tinit1 with qnearest1 as its parent
14: end if
15: if ValidEdge(qnearest2, qnew2, X) then
16: Add qnew2 to Tinit2 with qnearest2 as its parent
17: end if
18: Swap Tinit1 and Tgoal1
19: Swap Tinit2 and Tgoal2
20: end while
21: P ← ExtractJointPath(Tinit1, Tgoal1, Tinit2, Tgoal2)

return P

D. Conflict Based Planning

Conflict-Based Search (CBS) is a popular distributed so-
lution to multi-agent path finding problem. The two-layered
algorithm operates on the space of potential robot plans,
solving for each robot independently, while using a high
level planner to resolve conflicts between potential plans. The
algorithm generates collision constraints for path conflicts
between agents, rather than aggregating the agents into a
single joint entity. In its high level search, the CBS grows
a constraint tree, where each node contains a suggested
robot path, a vector of inherited collision constraints, and an
associated cost. In our implementation, these suggested robot
paths are not necessarily collision free, and the conflict-based
search relies on its low level sampling based planner, in our
case RRT-Connect, to quickly re-plan with consideration to
its constraints. Furthermore, the cost function of this high
level search is composed of the aggregated path length of
each robot in the search.

Our implementation of a Kino-Dynamic Conflict Based
Search begins by initializing a priority queue Q, an empty
constraint tree T and a root node nroot. The algorithm



Algorithm 4 Kino-Dynamic Conflict Based Search
1: Q,nroot, p0 ← ∅
2: for each robot i do
3: p0 ← p0 ∪RRTConnect(Mi, O, xi,0, xf,0, ∅, ∅)
4: end for
5: nroot ← p0, cost
6: Q.push(nroot)
7: while ¬(Q).empty(), ¬(goal reached) do
8: cnode ← Q.top()
9: C = checkCollisions(cnode.plans(), d)

10: if C.empty() then
11: return cnode.plans()
12: else
13: Q.pop()
14: for each robot i in Ci do
15: K ← convertCollisionConstraint(Ci)
16: pi ← RRTConnect(Mi, O, xi,0, xf,0,Ki, d)
17: s← pi, cost
18: Q.push(s)
19: end for
20: end if
21: end while

then sends a ros-service call to Quad-SDK’s Global Body
Planner with a robot model Mi, terrain map O, start and
goal positions xi,0, xf,0, and an empty set of constraints.
The returned trajectories from the RRT-Connected are stored
within the root node of the tree, which is then pushed into
the queue.

At every iteration of the CBS, we pop the node with
the smallest associated cost. Given the discretized path from
each robot, we check every pair of robots for conflicts, by
checking their relative COM positions, with a predefined
safety threshold d. If the paths return conflict free, each
corresponding plan is published and sent to its respective
local planner for foothold resolution. [5].

Path conflicts are defined in a method similar to [3], in
which each collision is described as C = ⟨i, j, [ts, tf ]⟩ where,
i, j, correspond to the agents involved in the collision, and ts
, tf corresponding to the start and end times of the collision.
In our case, since the algorithm operates on discretized body
trajectories, these also happen to correspond to plan indices.
A simplifying assumption was made that robots that have
reached their goal positions remain in stance phase until the
completion of all plans.

After generating a vector of robot conflicts, we arbitrarily
select a conflict Ci, and for each robot involved generate a
corresponding successor s. Each constraint is represented as
a collection of static obstacles, of size d, and the function
convertCollisionConstraint takes the collision Ci and con-
verts it into vector K, composed of the body positions of
the other robot. Essentially, robot 1 must avoid the set of
points correlated to the relative position of robot 2 at the
time of collision. This vector of collisions is passed to the
RRT Connect which in addition to its kino-dynamic checks,
also rejects any potential sample or connect operation that

leads to a state overlapping with our collision constraints.
Both of these successors are pushed into the queue and the
process repeats until a collision free node is found.

As currently implemented, the algorithm cannot guarantee
completeness, given the current representation of the colli-
sion constraints, as well as our handling of scenarios where
robot behavior appears to be coupled (e.g. a tight corridor,
where one robot is required to wait for the other to pass).
Representing collision constraints as static obstacles may
over constrain the space of viable robot positions in the map,
preventing us from finding a solution, even if one exists.
As such a great deal of tuning is needed to minimize these
effects.

IV. RESULTS

To test the three planner methods, a quad-SDK simulation
was used where two robots were dropped at a set start point.
Random goal points were fed into both robots and all three
planners were run on the same set of start and goal points.
The joint and sequential were run a total of 16 times while
the CBS planner was only run 5 times. Of the 5 times the
CBS planner was run, the same start and goal points were fed
into the all three planners to keep consistency. The average
performance of the three planners are shown in Table I. Each
planners path observation is discussed in more detail.

Fig. 2. Sequential Planner trajectory planning results

Planner Avg. Path Length Avg. Planning Time Success
Sequential 18.2 0.094 11/16
Joint 16.85 1.067 13/16
CBS 15.12 0.254 5/5

TABLE I
SIMULATION RESULTS ON FLAT TERRAIN

The Sequential RRT planner demonstrated its quick ability
to arrive at a solution. However, in couple scenario the robot
was not able to find a path for the second. This scenario
largely rose when trying to fit the second robot in a corner
position while it is blocked by the first robot. Since the
planner is solved sequentially, the first robot interpolated path
blocks the second robot. The CBS planner was able to send
the second robot to the goal position before the first robot
reached the goal position. Figure 2 shows the sequentially
RRT shining where there is a lot of space for the second
robot to travel around the trajectory of the first robot as



highlighted by the red planning lines. Figure 3 shows where
the sequential RRT takes a submoptimal path to the goal.
This is possibly due to the fact that the robot cannot directly
cross first robots path as the time distance from robot ones
position is the same as robot two to reach that point. Hence,
it is blocked for the second robot initially and the planner
connects a more suboptimal path.

Fig. 3. Sequential Planner Suboptimal Trajectory

The Joint Planner overall performs much better than than
the sequential planner due to the solving of both robot
states. In this case, trajectory overlapping is not an issue.
However there were instances this planner failed. Although
the random points were biased away from each other, there
were times where the robots collided when traveling from
point to another as there was no real time internal collision
checking between other robots. Additionally, the solve time
for the Joint planner was substantially higher than the other
two methods. Proving that joint solving was infeasible for
more than two robots. Figure 4 below shows the joint planner
in action.

Fig. 4. Joint Planner Trajectory

The Conflict Based Search demonstrated its ability to
chart body trajectories in a series of trials with randomized
start and goal locations. It retains a relatively short average
planning time of 0.254 s, demonstrating its ability to quickly
determine collision free paths. The method was only tested
up until three robots, so determining its scalability is left to
future work.

The Conflict Based Search experienced difficulties when
robot start and goal states are in close proximity, a conse-
quence of the thresholding used to identify collisions. For
instance, if two robots start positions are less than threshold
d from one another, the planner may interpret that as a
collision and invalidate the start state of both robots, causing

Fig. 5. Conflict Based Search successfully solving head to head planning
problem, where robots exchange start states

the planner to fail.

Fig. 6. CBS trajectory planning on terrain with features ≈ 25cm, Walking
Phases are plotted in Red, Flight Phases are shown in blue

Additionally, the importance of collision threshold tuning
was found to be quite important, as sometimes the robot may
opt for a flight phase over another robot as opposed to taking
less direct route to goal.

Furthermore, the arbitrary conflict selection method
greatly impacted the success of the conflict based search,
because continuously selecting a given index of the conflict
list may result in behavior similar to the sequential RRT,
where one robot becomes heavily constrained and the other
goes directly to goal.

V. CONCLUSION

In this paper we have evaluated the performance of
three distinct planners: the Sequential Planner, the Joint
Space Planner, and the Kino-Dynamic Conflict-Based Search
(CBS). The choice of planner must be informed by the
specific requirements of the environment and the task at
hand.

Our first approach, The Sequential Planner, solves the
path finding problem in a linear, step-by-step manner, ad-
dressing each agent’s path independently. This approach,
while simpler and potentially more efficient in less crowded
environments, often falls short in complex scenarios where
interactions between agents significantly influence the overall
system’s behavior. Its primary limitation arises in scenarios
where the sequential nature leads to sub-optimal paths for
subsequent robots due to the constraints imposed by earlier
decisions. On the other hand, the Joint Space Planner takes a
more holistic approach, considering all agents simultaneously
as a single entity. This methodology is particularly advan-
tageous in tightly coupled scenarios, where the actions of
one agent directly impact the others. However, this approach
can become computationally intensive as the number of
agents increases, making it less feasible for larger systems.



Incorporating dynamic collision checking with other robots
as points are sampled will allow for even better performance
of the Joint RRT Planner.

While the Sequential and Joint Space Planners have their
merits in certain contexts, our Kino-Dynamic CBS, with
future enhancements, has the potential to offer a more
versatile and efficient solution for a wide range of multi-
robot coordination scenarios. With regards to the low-level
RRT, biasing the sampling of point in the RRT away from the
applied constraints may improve both the path quality and
the computation time. Additionally, simplifying assumptions,
i.e treating collision constraints as static obstacles that exist
for the entirety of the path duration, could be improved by
representing the constraint instead as a dynamic obstacle over
a given time period which may afford the afford the planner
more leeway in ascertaining a viable plan, and improve
its performance on smaller maps. In situations where robot
motion appears to be coupled, solving the joint problem for
two robots as described in [3] may be optimal, and remains
future work. Finally, incorporating time into the search would
allow for more fine tuned collision checking, but would also
greatly complicate the search especially since velocities are
a part of our state space.
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