

EDUCATION

Carnegie Mellon University <i>Ph.D in Mechanical Engineering - Robotics</i>	Pittsburgh, PA
<i>M.S. in Mechanical Engineering (Research) - Robotics and Control Systems</i>	<i>May 2024 – May 2028</i>
<ul style="list-style-type: none">○ Research: Reliable State Estimation for Walking Among Entanglements○ Coursework: Planning & Decision Making in Robotics, Modern Control Theory, Robot Dynamics & Analysis, Computer Vision for Engineers, Optimal Control & Reinforcement Learning, Intro to Deep Learning	<i>Aug 2022 – May 2024</i>
Massachusetts Institute of Technology <i>B.S. in Mechanical Engineering, Electrical Engineering and Computer Science</i>	Cambridge, MA
<ul style="list-style-type: none">○ Coursework: Intro to Robotics, Design & Analysis of Algorithms, Power Electronics Lab, Dynamics & Controls II, Product Engineering Processes, Thermo-Fluids Engineering I, Nanoelectronics & Computing Systems, Microcomputer Project Lab	<i>Sept 2018 – May 2022</i>

SKILLS

Languages: Python, C++, C, MATLAB, Julia, Assembly, HTML, CSS, Mathematica, Bash, CMake
Software: ROS1, Gazebo, RViz, Docker, Git, Webots, CAD (SolidWorks, AutoCAD, Autodesk Fusion, Creo), Eagle, LabView, Simulink, AWS, GCP, OpenCV, Tensorflow, Pytorch, Optitrack, Linux
Hardware: Machining/ Fabrication (Mill, Lathe, 3D-Printer, Waterjet, CNC), Circuit Construction and Design

EXPERIENCE

CMU Robomechanics Lab <i>Graduate Research Assistant</i>	Pittsburgh, PA
<ul style="list-style-type: none">○ Maintainer of Quad-SDK, an open source ROS based full-stack software framework for quadrupedal locomotion.○ Currently developing strategies for proprioceptive foot contact detection using a generalized momentum observer.○ Implemented an Extended Kalman Filter (EKF) in C++ for reliable on-board state estimation of a quadruped.○ Contributed to the development and hardware testing of a novel momentum observer and controller designed to enable quadrupedal robots to detect unexpected external forces and disentangle while walking through dense underbrush and other compliant obstacles.	<i>Sept 2022 – Present</i>
MIT ELO/ MIT Sandbox/ Volunteers for Medical Engineering (VME) <i>Undergraduate Research Assistant</i>	Cambridge, MA
<ul style="list-style-type: none">○ Developed and manufactured a portable sit-to-stand apparatus tailored for an elderly individual with restricted mobility, enhancing their daily life, particularly their needs in handicapped bathrooms.○ Investigated and formulated various methods of actuation using Solid Works to achieve secure and dependable patient lifting during transfers, while adhering to specified space and design parameters.○ Partnered with MIT Sandbox to bring the product to market, with the intention of distributing it to assistive care facilities.	<i>Oct 2020 – Mar 2022</i>
Shark/Ninja <i>Robotics Development Intern</i>	Needham, MA
<ul style="list-style-type: none">○ Drafted and manufactured unique brush-roll geometries and testing apparatus in Creo to optimize pet hair pickup on Shark Robotic Vacuum by 58%.○ Fabricated and designed Floor Powered Side Brushes to minimize costs and size without sacrificing edge cleaning performance.	<i>Jun 2021 – Mar 2021</i>

PROJECTS

Multi-Robot Motion Planning for Quadruped Robots

Pittsburgh, PA

Course Project - Carnegie Mellon - 16.782

Sept 2023 – Dec 2023

- Developed and implemented three algorithms to facilitate multi-robot motion planning of quadruped robots in C++; namely a Sequential RRT-Connect, Joint Space RRT-Connect and Conflict Based Search.
- Integrated each planner within Quad-SDK, adding substantial functionality to the open-source ROS framework.
- Performed comprehensive simulation testing within Gazebo to assess planner performance in generating collision-free and kinodynamically feasible paths over a variety of uneven terrain.
- Conducted a performance evaluation study, revealing that the Conflict Based Search exhibited better scalability beyond 4 robots, demonstrating the fastest planning time, and achieving an average path length 17.5% and 10.3% shorter than those of the Sequential and Joint methods respectively.

Hybrid Trajectory Optimization for a Monkey Bar Robot using DIRCOL

Pittsburgh, PA

Course Project - Carnegie Mellon - 16.745

Jan 2023 – May 2023

- Created a hybrid-system direct collocation (DIRCOL) trajectory optimization-based controller of a two-link Monkey-Bar robot in Julia. Utilized IPOPT solver and MeshCat libraries for visualization.
- Performed testing on a variety of link mass distributions and bar distances, while maintaining the ability to swing up from a dead-hang and between subsequent bars.

Dense Video Captioning with Semantic Alignment

Pittsburgh, PA

Course Project - Carnegie Mellon - 11.785

Jan 2023 – May 2023

- Enhanced Parallel Decoding for Dense Video Captioning (PDVC) framework with the addition of a trained tuner network to semantically align visual and caption features.
- Implemented and trained four different network architectures and tuned hyper-parameters of each to induce the highest quality video captions and alignment on the YouCook2 dataset.
- Performed an ablation study that determined a single layered convolutional tuner network outperforms the baseline PDVC in all four metrics BLEU4, METEOR, CIDEr, and SODA_c by 18.4%, 3.2% , 8% and 0.6% respectively.

Construction Site Hazard Detection

Pittsburgh, PA

Course Project - Carnegie Mellon - 24.678

Sept 2022 – Dec 2022

- Designed and programmed a construction site worker detection model using YoloV7 and transfer learning, while leveraging traditional CV techniques to compute global worker positions using transformation matrices and real site footage.
- Conducted tests on varied pre-recorded site footage, while successfully classifying workers who enter high-risk areas. Demonstrated a mAP0.5 of 92% with a precision of 90% and recall of 93%.

Path Planning and Control Strategies for an Autonomous Buggy

Pittsburgh, PA

Course Project - Carnegie Mellon - 24.677

Sept 2022 – Dec 2022

- Implemented and tuned PID, LQR, and MPC controllers for the lateral and longitudinal control of an autonomous buggy in Python and Webots. Vehicle dynamics were approximated using a bicycle model.
- Incorporated EKF SLAM for localization to successfully navigate CMU's buggy course in under 120 seconds and an average deviation of <3m from the optimal tracked path.

PUBLICATIONS & ABSTRACTS

Proprioception and Reaction for Walking Among Entanglements

Justin K. Yim, Jiming Ren, **David Ologan**, Selvin Garcia Gonzalez, and Aaron M. Johnson

In IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2023

Quad-SDK Update: Estimation, Underbrush, and Other Improvements

David Ologan, Ardalan Tajbakhsh, Justin K. Yim, Yanhao Yang, Joseph Norby, Jiming Ren, Selvin Orlando Garcia Gonzalez, and Aaron M. Johnson

In IROS Late Breaking Results, October 2023

ACADEMIC MEMBERSHIPS

CMU Mechanical Graduate Student Ambassador

Sept 2023 - Present

MIT Electronics Research Society (MITERS)

Oct 2018 - Aug 2020

MIT Maker-Works

Oct 2018 - Jun 2021